The People’s System

A year ago, the entry in this blog called Can you hear what you’re doing? was the first in a series written with the hope of helping musicians and other recordists who are interested, like myself, in studio setups that avoid superimposing their own sonic thumbprint on the signals they reproduce.  I hope these entries will also be of interest to any music and sound enthusiast who seeks a system capable of what I call “getting out of the way” in order to provide more direct access to the recordings in their music collection.

Previous entries have talked about monitoring system setup and room acoustics.  In the entry preceding this one, Magnificent Maggies, I spoke of a particular favorite speaker design, Jim Winey’s Magneplanars, and how I’ve found them to be exemplary in terms of stepping aside and allowing the listener to truly hear the input signal.

To be clear, not everyone really wants to hear the input signal unaltered.  Some folks like their systems to offer certain colors that please their ears.  While I would never argue with whatever brings anyone their listening pleasure, this entry is directed toward folks who want the colors to come from the music and not from the gear used to listen to it.

A system that gets out of the way is pivotal for those making records.  Unless they can be confident they are assessing the sound of the recording itself, they risk altering the sound to make inaccurate monitoring sound “right.”   If that happens, when they listen elsewhere they find that the recording itself doesn’t sound the way they intended it to sound.  Such a system is important to music lovers too because it reveals all the nuances contained in their music libraries.

I have often been asked to recommend a system for musician friends, clients, and other friends. In the majority of instances the recommendations have been very similar.  What I’m going to describe here is the least expensive system I would trust for monitoring recordings.  (I’ve heard systems costing considerably more that do not elicit the same confidence on my part.)  It is equally suitable for any music lover, whether as a starter system in a college dorm or as an ultimate system for folks who don’t seek anything more.  One can certainly spend less and have a very enjoyable system, but I would not recommend such for anyone who makes records or anyone who wants to hear the most from their music.

It is important to remember that the ideal recommended system will vary depending on the source of the recommendation.  I often say that if you ask three folks an audio question, you will receive at least four different answers.  I will report on a system I have experienced in many rooms and which has brought smiles to many musicians, recordists, and other music lovers I know.

For the purpose of this entry, I’m going to divide the music system into two parts: the front end and the back end.  The front end might be as simple as a CD or turntable, or it might be as elaborate as a computer feeding an external digital-to-analog converter (also known as a DAC).  The front end is the source from which recordings are played.  The back end is the monitoring which includes the loudspeakers and the electronics that drive the speakers.  The system I’m recommending here is built around the monitoring.

In the previous entry, I said that I often refer to Magnepan’s MMG model ($599/pair) as “The People’s Speaker.”  To quote from that entry, “I’ve heard some $10,000 and $15,000 speakers that have so much ‘personality’ they end up exhausting the listener and engendering headaches.  MMGs, within their capabilities, just sound like what they are fed.  Properly set up, they are a joy that any music lover will intuitively recognize.”  The MMGs are the core of what I’ll call “The People’s System.”

What is needed now are associated components that will allow the MMGs to reveal their magic.  The speakers must be paired with an amplifier to drive them.  The most economical good match for the MMGs I’ve found so far is the RR-2150 stereo receiver ($699) from Outlaw Audio.  With sufficient power to drive the MMGs, the RR-2150 also serves as the control center for the system, where the input source can be selected and the playback volume adjusted, using either the front panel or the included remote.

While they are often overlooked when folks assemble audio systems, I’ve found the cables that connect all the individual pieces of gear to be critical in getting the best out of the whole.  In the entry called The High End Arrives, I recounted my earliest exposure to good cables.  It started with the loudspeaker cables.  From that entry: “…I already had ‘heavy gauge’ wires feeding the speakers.  Once the cable was sufficient to pass the requisite power to the loudspeakers, I wondered ‘how could cable make a difference?’  Once again I listened and once again I learned.  Where did all that musical information come from?  What was formerly just a guitar chord was now a set of individual strings sounding together to make that chord.  The room in which the musicians were playing was suddenly also much more clearly evident – both in recordings made in real rooms and those where a ‘room’ sound was added artificially via electronic reverberation.  Where cables had previously been not much more than an afterthought, required to get sound from one component in the chain to the next, I came to realize they are components in themselves and as with any chain, the weak link will determine the overall strength.”  I wrote more about the subject in the New Connections entry last year.

In my experience, the MMGs will easily reveal differences in cables and so I recommend using wires that are commensurate with the rest of the monitoring system we’re assembling here.  For this system, I recommend White Lightning speaker cables ($429/3-meter pair) from Nordost.  In order to connect a front end source component to one of the inputs on the Outlaw RR 2150, I recommend Nordost’s White Lightning interconnect cables ($189/1-meter pair).

Each of the cables is available with different types of connectors at each end.  I would choose Nordost’s “z-plug” banana connectors on their speaker cables, as these make for easy attachment at the amplifier and speaker ends.  Standard RCA connectors on the interconnect cables will work with the Outlaw RR-2150 and most source components.

Depending on the setup, shorter or longer speaker cables or interconnects may be desired.  In this example, I’ve chosen a 3-meter pair for the speaker cables and a 1-meter for the interconnects as good average lengths that work in most installations (and to “ballpark” the price).

So, excluding the front end source component(s), the system consists of:

Magnepan MMG loudspeakers  $599
Outlaw Audio RR-2150 receiver  $699
Nordost White Lightning speaker cables  $429
Nordost White Lightning interconnects  $189

The total cost for this part of the system is $1916.  All that is needed now is the front end source or sources.  I’ve heard this system make mellifluous musical magic with inputs as simple as a $35 Sony DVD/CD player spinning a CD, or as complex as a computer-centered digital audio workstation in a studio feeding the system via an external DAC.

One thing that might surprise folks who are new to components like these is that wonderful as they sound fresh out of the box, all of them will improve considerably once they have played music for a while.  The cables and electronics get better over the first 100 hours of use, while the speakers can take as much as 400 hours of playing music to get to their best performance.  Extension in the bass as well as the treble, smoothness in the upper frequencies, “airiness”, and dynamic range all exhibit improvements.  The dimensions of the stereo soundstage expand and overall focus attains greater detail.  The system will sound fantastic immediately but will ultimately get even better.

While I could happily live with this system as described (and truly believe it tells a lot more sonic truth than I’ve heard in most studios), one of its beauties is that each of the various components will stand up to having any of the others upgraded within each respective brand.  For example, go up a model in the Magnepan line, and the RR-2150 and White Lightning will still deliver.  Go up to separate electronics, like Outlaw’s 2200 amplifiers, and the MMGs will respond to the increased power while the White Lightning will still faithfully render the signal from link to link in the component chain.  Go up to one of Nordost’s more elaborate cable designs, and the MMGs will reveal the increased performance.  These are all components that work superbly together, yet can also allow for growth.  And most importantly, the combination is true to the input signal.  Of course, models further up the Magnepan and Nordost lines will take the revelation level up accordingly.  (There are also some outstanding alternatives for more expensive electronics.)  But this system as it is, fits the goal mentioned at the start of this entry: It is capable of getting out of the way and providing more direct access to the music.  It gets my vote for The People’s System.

Digital grows and first experiments in stereo

When I first heard of digital audio, it seemed full of excitement and promise, with claims of perfect sound, perfect copies and a noiseless medium that was indestructible.  When I first experienced the subject of all these claims, I heard pain-inducing sound, questionable copies, new forms of noise and found the media more than a little bit fragile.

The earliest digital systems did well in the published laboratory measurements.  Frequency response was flat, without the “head bump” in the bass or the diminishing energy at either end of the spectrum suffered by analog tape.  Measurements of gross speed inaccuracy showed there wasn’t any.  Signal-to-noise ratio measurements also revealed devices capable of hiss-free recordings.  But when one sat down to listen to the recordings created with these digital systems, they just didn’t sound very good.

The news got better as some designers who heard the flaws in the technology began to study and address its weaknesses.  The devices used to convert signals from analog to digital got better, as did those used to convert digital audio back to an analog signal for playback.  While it had the edge in terms of measured response, there was still a very long way to go before the sound of digital was going to be competitive with analog.  One of the major stepping stones on that road to progress was the personal computer, which was just coming into popular use at the time.  In the second half of the ‘80s, I was introduced to one of the first computer-based digital audio systems.  Where the first digital editing systems I’d seen seemed like futuristic machines allowing edits I couldn’t have imagined doing with the razor blade and Edit-All bar from the analog tape days, the computer-based system, called a digital audio workstation (or DAW) took the concept an order of magnitude further.  Access was fully random and instantaneous.  No more having to first record everything prior to an edit point because the old system required masters to be assembled in sequence.  No more waiting for tape to wind to a specific place to hear a specific passage.  The entire program (or a tiny fraction of a second of that program) could be viewed on screen at once.  A click of the mouse was all that was required to hear any part of that program instantly.  All sorts of sonic adjustments could be made that could not be made before, at a level of detail unattainable in the past.

Another promise of the digital audio workstation was something I had long looked forward to, which was the elimination of tape.  While it had served well as an analog medium, my experience with tape for digital audio was that it was quite fragile.  A particle of dust was all it took for playback to suffer a “dropout”, a momentary muting of the audio.  Digital recordings on tape didn’t age well either, as our digital tape analyzers confirmed with significantly increased incidence of the digital system’s error correction coming into play as a tape got older.  Some tape formats, like the miniscule DAT (Digital Audio Tape, a digital audio cassette of sorts) used tape so thin and so fragile it was not uncommon for 6-month old DATs to no longer be playable, the audio devolving from music into something more closely resembling a fax transmission.  The digital audio workstation had an accessory disc recorder, which recorded on blank discs, recordable CDs (or CD-R).  The first blank discs I saw sold for $75 each and the failure rate (the creation of “coasters”) was high.  How far we’ve come since then, with very high reliability, no-failure discs selling for 35 cents apiece!

At this point in my experience, however, I got suspicious.  I’d been there before with new technologies offering undeniable improvements in certain aspects of the quality or in certain aspects of the mechanical operations required to capture audio and turn it into a finished recording for the listener.  There was always that little detail though:  the sound.  Almost a faux pas to mention it in some circles but it is what all this is about, isn’t it?  So I wanted a real demo of this new computerized system.  I wanted to hear what happened to audio that passed through it.  I wanted to compare a CD-R made on one of these systems with the signal used to burn that disc.

While all these developments were occurring, I had been engaged in a related pursuit with my early experiments in recording in stereo.  I had learned and used the techniques common to most studio practices where multiple microphones were deployed to capture multiple sounds which were later combined during the mix down to (the 2-channel, dual mono result that is commonly but erroneously referred to as) “stereo”.  As interesting as this was and as interested as I was in honing the techniques in order to create something more convincing—something that sounded “in here” (in the control room) more like it sounded “out there” (in the studio with the musicians), I found the idea of a much simpler approach even more intriguing.  I began to experiment with a more first principles strategy, questioning every single aspect of record making, every single component of the process and every single decision involved.  This was the beginning of what I later came to think of as “The Questions”.  These are questions that need to be asked if one is ever to arrive at answers. They are the questions I’d never seen mentioned in any of the books on recording I’d ever read or in any of the magazines.  They are the questions I was never taught to ask when I was an assistant engineer, the questions that students in today’s “audio engineering” schools never encounter.  How fortunate I was that it ultimately occurred to me to ask them.

The questions are in fact, simple; so simple, they and the answers they might lead to tend to get overlooked:
“Why this microphone?
“What results do I expect from selecting this microphone?”
“What results of selecting this microphone might occur which I do not expect?”
“Why place it here?”
“What results do I expect from placing this microphone here?”
“What results of placing this microphone here might occur which I do not expect?”
“Why am I turning this particular knob to adjust the sound?”
“What did I do wrong in a previous step that I believe will be remedied by turning this knob?”
“What results might occur which I do not expect?”

There are an infinite number of questions, as many as there are decisions to be made in the process of making a record, from conception to manufacturing the finished product.  As I set out to find the questions and hopefully some answers to same, I started making recordings in an entirely different fashion.  Rather than layering multiple recordings, each picked up with a large number of microphones, I sought to capture real performances in a single shot, recording “live” (for the microphones), using only as many microphones as there would be playback channels.  In the case of stereo, that meant only two microphones.  (I’ve developed the technique since then to allow layered recording, i.e., overdubbing, where players do not all have to perform at the same time or where a musician or vocalist can perform more than one part.  However, I became increasingly taken with the idea of capturing real performances in real stereo.)

The first tests were solo piano recordings and these provided a great deal of education in terms of capturing what I’d hoped to capture but even more regarding certain aspects of the results that I did not expect.  For all of these tests, with the goal of maximum fidelity in mind, I was using microphones more commonly employed for critical measurements of sound than in making actual music recordings, where microphones with more pronounced sonic character were (and remain) much more the rule.  These were the Danish microphones from Brüel & Kjaer (B&K, now Danish Pro Audio or DPA), with relatively small diaphragms compared to the large diaphragm mics generally used to record music.  The B&Ks were also omnidirectional microphones—they “heard” sounds from all directions—whereas most studio mics have a more directional pickup tending to focus on what is directly in front of them.  (This most common, front-hearing type of microphone directivity is called “cardioid” because of the vaguely heart-shaped laboratory representation of how it “hears”)  Over time, I came to believe that all microphones are in fact omnidirectional but some (the sort called “directional” ) apply more color—are less transparent—to off-axis sounds, those coming from the sides or behind them.  True omnis are more neutral in terms of timbre than their directional counterparts.  They’re better at getting out of the way.  (Of course, not all recordists want their gear to get out of the way.  What is “good” depends entirely on the results one seeks.  For the purpose of making a recording that sounds like what occurs in the presence of the microphones, I want gear that gets out of the way.)

The mics captured so much of what was occurring in the room, they showed me things I had up to then failed to consider in the recording.  Prime among these is the room in which the performance occurs.  In hindsight, this only makes sense since the departure from close mic placement means the engineer is no longer simply mic’ing the instrument; they are mic’ing the event.  The place in which it occurs is very much a key sonic component of the event.  A fine grand piano sounds very different in a nice auditorium than it does in even a large domestic room.  The latter has intimacy but the former is required to access the grandeur—assuming the music and performance call for this.  (Here again, what is “good” depends entirely on the results one seeks.)

For the next experiment, I got permission to use a more suitable space:  Atlantic’s Studio A.  The instrumentation for this project consisted of grand piano, synthesizer, saxophone, bass and drums.  I’d been giving a lot of thought to how I would deploy the microphones this time.  For the earlier solo piano experiments, my thinking was really in terms of the piano, though the results taught me I should have taken a wider perspective to include the space.  Now I was also considering the relationship between the positions of the two microphones during recording and the two speakers during playback.  I thought there might be some reciprocity between the both ends of the chain.  (I will return to this concept in a future entry.)

The recording I made that night had a sense of coherence and focus I had heard on only a tiny number of recordings before then.  Though it was far from perfect and offered a number of new insights on what I should (and should not) do, it was a personal landmark insomuch as it really did offer a sense of being there, of bringing the listener to the performance, in the space in which that performance occurred.

When the folks offering the demo of the digital audio workstation responded to my skepticism by offering to burn me a CD-R, I knew exactly which recording would tell me the most about how passing through that computer system would affect the sound.  When they delivered the disc, I spent a lot of time doing synchronized comparisons of the disc playback with the original recording, switching back and forth between the two.  In the end, at the time, I could not detect a sonic difference.  Further tests of the workstation also revealed that while the existing (pre-computer) system introduced new types of distortions during certain operations, those same operations could be performed on the computer-based system with transparent results.  (There will be more to say about this in a future entry about the evolution of digital audio.)

Happily, digital audio was to make some great progress to get to where it is today.  Before that was to happen though, a perhaps even more earth-shaking experience was coming.  Despite what I’d been taught and what I’d read about in all the years I had enjoyed playing back recorded music, I was soon going to hear stereo for the first time.